Search results for "energy dependence"

showing 10 items of 14 documents

Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC

2018

We report the measured transverse momentum ($p_{\rm T}$) spectra of primary charged particles from pp, p-Pb and Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV in the kinematic range of $0.15<p_{\rm T}<50$ GeV/$c$ and $|\eta|< 0.8$. A significant improvement of systematic uncertainties motivated the reanalysis of data in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV, as well as in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, which is also presented. Spectra from Pb-Pb collisions are presented in nine centrality intervals and are compared to a reference spectrum from pp collisions scaled by the number of binary nucleon-nucleon collisions. For cent…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]heavy ion: scatteringHadronmomentum [up]binaryMULTIPLICITY DEPENDENCEPartonheavy ion: scattering ; transverse momentum: momentum spectrum ; quantum chromodynamics: matter ; parton: energy loss ; momentum: high ; up: momentum ; pp: scattering ; nucleus ; charged particle ; suppression ; energy dependence ; impact parameter ; transport theory ; nucleon nucleon ; CERN LHC Coll ; kinematics ; binarymomentum spectrum [transverse momentum]hiukkasfysiikkaKAONnucl-ex01 natural sciences7. Clean energy2760 GeV-cms/nucleonHigh Energy Physics - Experimenttransverse momentum: momentum spectrumHeavy Ion Experiments; Heavy-ion collision; Nuclear and high energy physicsHigh Energy Physics - Experiment (hep-ex)quark gluon plasma Heavy Ion Experiments Heavy-ion collisionnucleon nucleonHeavy-ion collisionhigh [momentum]PIONscattering [p p]transport theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)impact parameterNuclear ExperimentNuclear ExperimentQCD matterparticle production and suppressionPhysicsPhysicsHADRONSheavy ion experiments heavy ion collision particle production and suppressionHeavy Ion Experiments; Heavy-ion collisionVDP::Kjerne- og elementærpartikkelfysikk: 431suppressionCENTRALITY DEPENDENCEcharged particleCharged particleMULTIPLICITY DEPENDENCE; CENTRALITY DEPENDENCE; HADRONS; SUPPRESSION; MODEL; KAON; PIONquark gluon plasma:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollVDP::Nuclear and elementary particle physics: 431kinematicsHeavy Ion ExperimentImpact parameterParticle Physics - ExperimentHeavy Ion Experiments Heavy-ion collision Nuclear and High Energy Physics.Nuclear and High Energy Physicsp p: scatteringnucleon nucleon: scatteringenergy loss [parton]FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencesenergy dependenceNuclear physicsPionHeavy Ion Experiments[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [heavy ion]0103 physical sciencesmatter [quantum chromodynamics]lcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530Nuclear Physics - Experiment5020 GeV-cms/nucleonup: momentum010306 general physicsp nucleus: scatteringquantum chromodynamics: matterta114010308 nuclear & particles physicshep-exnucleus:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Nuclear and high energy physicsheavy ion collisionMODEL* Automatic Keywords *13. Climate actionmomentum: highQuark–gluon plasmalcsh:QC770-798High Energy Physics::Experimentparton: energy lossEnergy (signal processing)experimental results
researchProduct

Forward rapidity isolated photon production in proton-nucleus collisions

2018

We calculate isolated photon production at forward rapidities in proton-nucleus collisions in the Color Glass Condensate framework. Our calculation uses dipole cross sections solved from the running coupling Balitsky-Kovchegov equation with an initial condition fit to deep inelastic scattering data and extended to nuclei with an optical Glauber procedure that introduces no additional parameters beyond the basic nuclear geometry. We present predictions for future forward RHIC and LHC measurements. The predictions are also compared to updated results for the nuclear modification factors for pion production, Drell-Yan dileptons and $J/\psi$ mesons in the same forward kinematics, consistently c…

Drell-Yan processPhotongeometryProtonNuclear TheoryNuclear Theorypi: productionhiukkasfysiikka01 natural sciencesColor-glass condensateHigh Energy Physics - Phenomenology (hep-ph)coupling constant: energy dependenceopticalNuclear ExperimentBrookhaven RHIC CollPhysicsphoton: productionenergy: highhigher-order: 0higher-order: 1suppressionBalitsky-Kovchegov equationHigh Energy Physics - PhenomenologyCERN LHC CollkinematicsNuclear and High Energy PhysicsMeson[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciencesGlaubermeson114 Physical sciencesdileptonNuclear physicsNuclear Theory (nucl-th)Piondeep inelastic scattering0103 physical sciencesRapidityproton-nucleus collisions010306 general physicsta114010308 nuclear & particles physicsnucleusphoton productionDeep inelastic scatteringboundary condition* Automatic Keywords *rapidity[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]color glass condensatecross section: dipolep nucleusGlauber
researchProduct

Observation of e + e − → ηψ(2S) at center-of-mass energies from 4.236 to 4.600 GeV

2021

Journal of high energy physics 2021(10), 177 (2021). doi:10.1007/JHEP10(2021)177

ExoticsNuclear and High Energy Physicsmeasured [channel cross section]e+-e− ExperimentsQuarkoniumannihilation [electron positron]QC770-798electron positron: annihilationetaParticle and resonance productionMeasure (mathematics)530Standard deviationNONuclear physicsSubatomär fysikCross section (physics)e+-e��� Experimentsenergy dependence: measured [cross section]Astronomi astrofysik och kosmologiNuclear and particle physics. Atomic energy. RadioactivitySubatomic PhysicsAstronomy Astrophysics and Cosmologyddc:530e+-e− Experiments Exotics Particle and resonance production Quarkoniumpsi(3685)PhysicsBESe(+)-e(-) ExperimentsDetectorstatistical [error]electron positron --> eta psi(3685)e +-e − Experimentselectron positron: colliding beamsBeijing Stor4.236-4.600 GeV-cmsCollisionerror: statisticalYield (chemistry)e-e Experimentselectron positron --&gt; eta psi(3685)colliding beams [electron positron]High Energy Physics::ExperimentCenter of masscross section: energy dependence: measuredchannel cross section: measuredStorage ringexperimental results
researchProduct

Features of the Energy Spectrum of Cosmic Rays above 2.5×10$^{18}$ eV Using the Pierre Auger Observatory

2020

We report a measurement of the energy spectrum of cosmic rays above $2.5{\times} 10^{18}$ eV based on $215,030$ events. New results are presented: at about $1.3{\times} 10^{19}$ eV, the spectral index changes from $2.51 \pm 0.03 \textrm{ (stat.)} \pm 0.05 \textrm{ (sys.)}$ to $3.05 \pm 0.05 \textrm{ (stat.)}\pm 0.10\textrm{ (sys.)}$, evolving to $5.1\pm0.3\textrm{ (stat.)} \pm 0.1\textrm{ (sys.)}$ beyond $5{\times} 10^{19}$ eV, while no significant dependence of spectral features on the declination is seen in the accessible range. These features of the spectrum can be reproduced in models with energy-dependent mass composition. The energy density in cosmic rays above $5{\times} 10^{18}$ eV …

FOS: Physical sciencespower spectrumGravitation and Astrophysics7. Clean energy01 natural sciences530energy dependencemass spectrumcosmic ray; astroparticle detectors; cosmic ray spectracosmic ray spectraastroparticle detectors5/30103 physical sciencesddc:530energy: densityUHE Cosmic Rays010303 astronomy & astrophysicscosmic rayHigh Energy Astrophysical Phenomena (astro-ph.HE)Ultra-high energy cosmic rays energy spectrum astrophysical implications Cherenkov detectorscosmic radiation: energy spectrum010308 nuclear & particles physicsPhysicsAugerobservatoryEnergy SpectrumspectralAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]energy spectrum [cosmic radiation]density [energy]
researchProduct

A glimpse of gluons through deeply virtual compton scattering on the proton

2017

The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)—a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energ…

Genetics and Molecular Biology (all)PhotonProtonHigh Energy Physics::LatticeNuclear TheoryGeneral Physics and AstronomyVirtual particleparton: distribution functionBiochemistry01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]p: structure functionNuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]lcsh:ScienceNuclear ExperimentNuclear ExperimentPhysicsenergy: highMultidisciplinarystrong interactionChemistry (all)QCompton scattering: form factorphoton: energy spectrumHigh Energy Physics - Phenomenologyconfinementelectron p --> electron p photonchannel cross section: measuredQuarkelectron p: deep inelastic scatteringParticle physicselectron: polarized beamScienceStrong interactionFOS: Physical sciencesBethe-Heitler[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ArticleGeneral Biochemistry Genetics and Molecular Biologyenergy dependencequarkPhysics and Astronomy (all)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]photon: emissiondeeply virtual Compton scattering0103 physical sciencesstructure010306 general physicsquantum mechanics: interference010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCompton scatteringGeneral ChemistrygluonsensitivityGluon[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Quark–gluon plasmalcsh:Q[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentholographyChemistry (all); Biochemistry Genetics and Molecular Biology (all); Physics and Astronomy (all)photon: virtualexperimental results
researchProduct

Transition form factors of the N(*()1535) as a dynamically generated resonance

2007

We discuss how electromagnetic properties provide useful tests of the nature of resonances, and we study these properties for the N*(1535) which appears dynamically generated from the strong interaction of mesons and baryons. Within this coupled channel chiral unitary approach, we evaluate the A_1/2 and S_1/2 helicity amplitudes as a function of Q^2 for the electromagnetic N*(1535) to gamma* N transition. Within the same formalism we evaluate the cross section for the reactions gamma N to eta N. We find a fair agreement for the absolute values of the transition amplitudes, as well as for the Q^2 dependence of the amplitudes, within theoretical and experimental uncertainties discussed in the…

Nuclear Theorydispersion relationamplitude analysis [helicity]Nuclear Theoryform factor [N(1535)]FOS: Physical sciencesscattering amplitude [meson baryon]Nuclear Theory (nucl-th)nonrelativistictransition [form factor]ddc:530higher-order [Feynman graph]ratio [channel cross section]numerical calculationsNuclear Experimentphotoproduction [eta]chiral [symmetry]effective LagrangianFísicaenergy dependence [channel cross section]coupled channelradiative decay [N(1535)]relativisticinelastic scattering [electron nucleon]inelastic scattering [photon nucleon]
researchProduct

On the use of a running coupling in the calculation of forward hadron production at next-to-leading order

2018

We study a puzzle raised recently regarding the running coupling prescription used in the calculation of forward particle production in proton-nucleus collisions at next-to-leading order: using a coordinate space prescription which is consistent with the one used in the high energy evolution of the target leads to results which can be two orders of magnitude larger than the ones obtained with a momentum space prescription. We show that this is an artefact of the Fourier transform involved when passing between coordinate and momentum space and propose a new coordinate space prescription which avoids this problem.

Nuclear and High Energy Physicslead: targetHadronFOS: Physical sciencesPosition and momentum spacehiukkasfysiikka114 Physical sciences01 natural sciencesColor-glass condensatesymbols.namesakecoupling constant: energy dependenceHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesStatistical physicshadron: productionCoordinate space010306 general physicsCouplingPhysicsenergy: highta114010308 nuclear & particles physicssaturationhigher-order: 1Order (ring theory)High Energy Physics - Phenomenology* Automatic Keywords *Fourier transform[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Color Glass Condensatesymbolsp nucleusOrder of magnitudeNuclear Physics A
researchProduct

Isolated photon production in proton-nucleus collisions at forward rapidity

2018

We calculate isolated photon production at forward rapidities in proton-nucleus collisions in the Color Glass Condensate framework. Our calculation uses dipole cross sections solved from the running coupling Balitsky-Kovchegov equation with an initial condition fit to deep inelastic scattering data. For comparison, we also update the results for the nuclear modification factor for pion production in the same kinematics. We present predictions for future forward RHIC and LHC measurements at $\sqrt{s_{NN}}=200$ GeV and $\sqrt{s_{NN}}=8$ TeV.

PhotonNuclear TheoryProton7. Clean energy01 natural sciencesColor-glass condensateHigh Energy Physics - Phenomenology (hep-ph)coupling constant: energy dependenceDEPENDENCEPIONNuclear Experiment[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th]Brookhaven RHIC CollPhysicsphoton lepton and quark productionLarge Hadron ColliderD+AU COLLISIONSphotonBalitsky-Kovchegov equationP-PB COLLISIONSHigh Energy Physics - PhenomenologyCERN LHC Colllepton and quark productionLHCphoton: forward production[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciencespi: hadroproduction114 Physical sciencesNuclear Theory (nucl-th)Nuclear physicsPiondeep inelastic scatteringquantum chromodynamics0103 physical sciencesRapidity010306 general physicsp nucleus: scatteringta114010308 nuclear & particles physicsCOLOR GLASS CONDENSATEDeep inelastic scatteringHADRON-PRODUCTIONboundary conditionDipolerapidityQCD in nuclear reactions[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]TEV[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]cross section: dipole
researchProduct

Use of a running coupling in the NLO calculation of forward hadron production

2018

We address and solve a puzzle raised by a recent calculation [1] of the cross-section for particle production in proton-nucleus collisions to next-to-leading order: the numerical results show an un- reasonably large dependence upon the choice of a prescription for the QCD running coupling, which spoils the predictive power of the calculation. Specifically, the results obtained with a prescription formulated in the transverse coordinate space differ by one to two orders of magnitude from those obtained with a prescription in momentum space. We show that this discrepancy is an artefact of the interplay between the asymptotic freedom of QCD and the Fourier transform from coordinate space to mo…

Position and momentum spaceQCD EVOLUTION01 natural sciencesAsymptotic freedomquantum chromodynamics: correctionhard scatteringHigh Energy Physics - Phenomenology (hep-ph)coupling constant: energy dependencestrong interaction: coupling constantEQUATIONkvanttifysiikkaComputingMilieux_MISCELLANEOUSPhysicsQuantum chromodynamicsQUARKhigher-order: 1nuclear physicssddc:12.39.StHigh Energy Physics - Phenomenology12.38.Bxsymbolsydinfysiikkahadron: forward productionFOS: Physical sciences114 Physical sciencesRENORMALIZATION-GROUP12.38.Cysymbols.namesakeCross section (physics)Theoretical physicsquantum chromodynamics0103 physical sciencessirontarelativistic heavy-ion collisionCoordinate spacenumerical calculations010306 general physicsp nucleus: scatteringcorrection: higher-orderCouplingta114010308 nuclear & particles physics25.75.-qCOLOR GLASS CONDENSATENONLINEAR GLUON EVOLUTIONRenormalization groupFourier transformasymptotic freedom[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph][ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physical Review D
researchProduct

The hadronic contribution to the running of the electromagnetic coupling and the electroweak mixing angle

2019

37th International Symposium on Lattice Field Theory, Wuhan, China, 16 Jun 2019 - 22 Jun 2019; PoS(LATTICE 2019)010 (2019).

QuarkParticle physicsneutral currentclover [fermion]High Energy Physics::LatticeHadronstandard modelLattice (group)hep-latWilson [quark]FOS: Physical sciencesLattice QCDelectromagnetic [current]nonperturbativeStandard Modelenergy dependenceHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)quantum chromodynamicshadronic [vacuum polarization]mixingVacuum polarizationcontinuum limitnumerical calculationsParticle Physics - PhenomenologylatticePhysicsElectroweak interactionHigh Energy Physics - Lattice (hep-lat)lattice field theoryflavor: 3 [quark]hep-phParticle Physics - LatticeFermionmass dependence [quark]High Energy Physics - Phenomenologyelectromagnetic [coupling]mixing angle [electroweak interaction]Energy (signal processing)
researchProduct